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Vapor-liquid coexistence in many-body dissipative particle dynamics
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Many-body dissipative particle dynamics is constructed to exhibit vapor-liquid coexistence, with a sharp
interface, and a vapor phase of vanishingly small density. The application to fluid mechanics problems involv-
ing free surfaces is illustrated by simulation of a pendant drop. The model is an unusual example of a
soft-sphere liquid with a potential energy built out of local-density-dependent one-particle self-energies.
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I. INTRODUCTION [13] and[15], but with a somewhat different interpretation of
the same mathematics. Therefore a general theory for many-
Dissipative particle dynamic§DPD) is familiar as a body DPD is described first. It can be argued that this in-
method of simulating complex fluids at a coarse grained/O|VeS a fundamental reinterpretation of the DPD interaction
level [1,2], for example block copolymer polymer melts potentials. The spgcific implemen_tation for vapor-_liquid
[3,4], and surfactant solutiori§,6]. DPD has also been used €quilibrium is described next, and finally the application to
for multiphase fluid problems, such as phase separation kfree-surface problems is illustrated by simulation of a pen-
netics in binary liquid mixture§7—9], droplet deformation ~dant droplet. Another application to vapor-liquid phase sepa-
and rupture in shear fieldsl0], and droplets on surfaces ration kinetics was described in an earlier npi8].
under the influence of shear fiel@i$l]. The advantage of
DPD for these kind of problems lies in the simplicity of the
underlying algorithm, and the physical way in which singular
events such as droplet rupture are captured. Such consider- Dissipative particle dynamics is basically molecular dy-
ations also make the method attractive fiee-surfacefluid ~ namics[20,21], with two key innovations. The first, and per-
dynamics problems. Examples of these include various kindRaps the most profound, is the use of soft interactions. This
of wetting, spreading, wicking, and capillary problems. To bestands in contrast to the common use of interaction potentials
used for these kind of problems, DPD needs to be extendecbrresponding to particles with hard cores—for example,
to allow for vapor-liquid equilibrium. In this way a free sur- Lennard-Jones interactions or modified hard-sphere interac-
face will arise naturally as a vapor-liquid interface, and suchtions. The second innovation is the use of a thermostat which
an interface will possess the same physics as a clean vap@enserves momentum locally. This allows one to simulate at
liquid interface. a well-defined temperature yet preserve hydrodynamics, and
To achieve vapor-liquid coexistence in DPD, for a single-this can be important for some problems such as phase sepa-
component system, requires a van der Waals loop in theation kinetics. The thermostat described below is the origi-
equation of statédEOS (pressure-density curyeHowever, nal (Espaml-Warren thermostat[22], although the Lowe-
this presents a fundamental limitation for standard DPDAndersen thermostat is perhaps simpler and more efficient
since the soft interaction forces used in the method invarif23]. In the present paper, the focus is on the equilibrium
ably lead to a predominantly quadratic EQR2]. One way properties of many-body DPD models for which the nature
around this is the “many-body” DPD method invented by of the thermostat is unimportant.
Pagonabarraga and Frenk#&B,14 and also investigated by The particles in DPD have positioms and velocitiesv;
Trofimov et al. [15]. In many-body DPD, the amplitude of wherei=1-N runs over the set of particles, moving in a
the soft repulsions is made to depend on the local density. Isimulation box of volumeV. They move according to the
this way one can achieve a much wider range of possibilitiekinematic conditiondr;/dt=v; and Newton's second law
for the EOS. dv;/dt=F;/m; wherem; is the mass of théth particle. Here
A similar approach to simulating liquid-vapor interfaces
was introduced by Nugent and Posch in the context of
smoothed particle applied mechani&PAM), also known as Fi=F ext 2 Fi (1)
smoothed particle hydrodynami¢SPH [16]. The connec- ' j#i
tion between many-body DPD and SPAM and SPH has been
greatly clarified recently by Espahand Revengdl7], who s the total force acting on théth particle, comprising a
introduce a *smoothed DPDTSDPD method as an SPH ossiple external forcg; ., and forces;; due to the inter-
variant based on a new formalism developed for discretgction petween théth and jth particles. The interaction

hydrodynamic418]. _ forces are decomposed into conservative, dissipative, and
In the present work, many-body DPD is developed t0 €Xyandom contributions:

hibit vapor-liquid coexistence, with a sharp interface, and a
vapor phase of vanishingly small density. The approach c. b R
taken is fundamentally the same approach as used in Refs. Fij=Fij+Fj+Fj. )

Il. GENERAL THEORY
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The individual contributions all vanish for particle separa-where «=0.101+0.001 is very close to the mean-field pre-
tions larger than some cutoff interaction range and all  diction ay= 7/30=0.1047(see also beloy The first term

obey Newton’s third law so thd;; + F;;=0. in the EOS is an ideal gas term, and the second term is the
The conservative force is excess pressure, which is almost perfectly quadratic in the
density (there is a very small correction of ordgf). Note
Fﬁ:AWc(rij)Qj , (3)  though thateA is not the second virial coefficieritl2], so

the above EOS is expected to break downderl. It seems
wherer;=r,—r;, r; =|fij|, ande;=r; /r;. The weight that a quadr.atic EOS like this is unavoidaple .for_ soft poten—
function we(r) vanishes forr>r. and, for simplicity, is tials[12]. Th|s rep.resents the funt;iamental limitation to basic
taken to decrease linearly with particle separation; thu©PD mentioned in the Introduction. Moreover, one has to
we(r)=(1—r/r.). The overall magnitude of the force law is ke force law amplitude in Eq3), A=0 (otherwise the
determined by the amplitudg, which is the main parameter Pressure diverges negatively at high densities one is re-

which is allowed to vary. stricted to a strictly positive compressibiligp/dp>0. In
The force law in Eq(3) corresponds to a total potential fact, makingA<0 throws the DPD pair potential into a for-
energy which is a sum of pair potentials: mal class of catastrophic potentials for which it can be rig-

orously proved that there is no thermodynamic lifdi2,26.
The situation is not as grim as it might seem though since
U({ri})=2 o(rij), (4) considerable progress can be made for applications by intro-
J=1 ducing different species of particles and allowing them to be
differentiated by their repulsion amplitudes; thiis»A;; in
where — ¢ ' (r)=Awg(r), and thuse(r)=(A/2)(1—r/r.)? Egs.(3) and (4).
for standard DPD. The dissipative and random forces are For the one-component fluid, an obvious way to get
Fi=—ywp(r)(vij-&)&; and Fi=owg(rj)&;e;. In  around the problem of a quadratic EOS is to make the am-
thesey and ¢ are amplitudeswp(r) andwg(r) are addi- plitude A in the force law dependent on density somehow.
tional weight functions also vanishing far>r., v;;=v; Such a scheme has been examined by several workers
—V;, and &;=§;; is pairwise continuous white noise with [13,15 and proves to be a simple extension to DPD. This
(&;(1))=0 and (&;(t)&q(t"))=(6id) + 8 8 8(t—t"). many-body DPD requires only a modest additional compu-
The dissipative and random forces act as the aboveational cost, but throws open the possibility to simulate sys-
mentioned thermostat provided that the weight functions antems with an arbitrarily complicated EOS. The approach de-
amplitudes are chosen to obey a fluctuation-dissipation theascribed here introduces a local density into the amplitude in
rem: o0?=2vkgT andwp=(wg)?, wherekgT is the desired the force law. By being explicit about the construction of the
temperature in units of Boltzmann’s constdqt [22]. The local density, this is a “safe” way to introduce a density
same weight function is used as for the conservative forcedependence into the interactiofs7,28.
(basically for historical reasonswg=wc andwp=(W¢)?. In many-body DPD, the force laws are written as
Usually all the particles are assumed to have the same
mass, and to fix units of mass and length a convenient choice 1
is to setm;=r.=1. Often the units of energy and_ henc_e time Fﬁ=§[A(pi)+A(pj)]wc(rij)e,j , (6)
are fixed by settindgcgT=1, but for equilibrium simulations
it can be convenient to ked T as a free parameter.
The integration of the equations of motion is a nontrivial for a one-component fluidTrofimov et al. [15] describe a
matter since one has to accommodate the random forces. Fowulticomponent generalizatipnA partial amplitudeA(p) is
an integration algorithm, Groot and Warren investigated dntroduced, depending on a weighted local density, which is
version of the velocity-Verlet scheme used in molecular dy-defined for theth particle to be
namics simulation$2], but it was later shown by den Otter
and Clarke that this is not a real improvement over a simple
Euler-type integration schenj@4]. More extensive studies E=Z W, (). (7)
have been undertaken by Vattulainehal. [25]. Alterna- 1#i
tively, the Lowe-Andersen thermostat can be used, which is
based on distinctly different physical ide@23]. All the  The weight functiorw,(r) vanishes for>r and for con-
simulations described below were carried out with the simplasenience is normalized so th§d3rwp(r) =1, although in
velocity-Verlet-like algorithm described by Groot and War- principle the normalization could be absorbed into the defi-
ren, with due care taken to avoid artifacts due to the finitenition of A(p;). The discounted self-contributidr=j in Eq.
size of the time step. (7) would only add a constant,(0) to’p;, amounting to a
For a single-component DPD fluid, the equation of stateconstant shift of the argument in the definition/fp;) (see
gives the pressuneas a function of the densiy=N/V. For  Trofimovet al. [15] for a more extensive discussion on this
the soft potential given above, the EOS is now well estabpoint). The weighted local density is readily computed by an
lished to bef2] additional sweep through the neighbor list; hence there is
only a modest additional computational overheadA(p)
p=pkpT+ aAp?, (5) =A, the method reduces exactly to the standard DPD model.
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In mean-field theory, it is easy to show that the modifiedthe excess free energy per particle. This shows that the inter-

force law should give an EOS pretationu=f{& is a mean-field approximation and, as such,
5 will be spoiled by correlation effects. Note also that correla-
Pur=pkeT + aneAlp)p®, ®)  tions mean, typically, (piY#p, and {(u(p;))#u({pi))

#U(p). Trofimov et al.give results for the mean local den-
sity and suggest ways that one might improve the correspon-
% dence betweerp;) and p. Here a different approach is
aM,:=(27T/3)f drriwg(r) (99 taken, in whichp; is regarded as a convenient intermediate
0 quantity which is used to construct the forces; as such it is
[i.e., aye= /30 for the standard choice afc(r)]. Thus, in not |.mportant that its average differs frgm In practice, like
principle, an arbitrary dependence on density can be reco%mﬁmov.et al, the mean-field EOS for many-body DPD can
ered. e considerably less accurat'e compareq to standarq DPD.
Thus the method always requires calibration to determine the

Th|§ is not the end of the story tbo_ugh. The eX|§tence of 6%rue thermodynamic propertieghe approach of Trofimov
potential energyJ ({r;}) such that;=—dU/dr; requires the et al.can be used to achieve a specific BOS

forces to obey a “Maxwell relation” of the typeF;/dr;
=dF;/ar;. This is a nontrivial requirement since the particle
positions appear both directly in Ed6) and indirectly IIl. SPECIFIC MODEL

through the definition of the local density in EJ). One can

show a necessary and sufficient condition for it to be true is A specific application of these ideas to set up a DPD
that the derivativew/, is proportional towc, so the two —model which exhibits vapor-liquid coexistence is now de-
weight functionsw, and wc are not independent. One can scribed. Before this, though, there is one more technical

then prove from the normalization condition an(r) that point to discuss. o . o
To stabilize the vapor-liquid interface, it is not sufficient

where

=W, (1) =wg(r)/2aye, (100  just to have a van der Waals loop in the EOS; one must also
give consideration to the ranges of the interactions. Thus
where ay is defined in Eq(9). simple many-body DPD with a single range may not have a

What, then, is the corresponding potential? The answer istable interface as discussed by Pagonabarraga and Frenkel
[13]. The trick employed here is to take the standard DPD
W — model, make the soft pair potential attractive, and add on a
U({r'})_Z’ ulen). (D repulsive many-body contribution with differentrangery4
<r.. Furthermore, the simplest form of the many-body re-
whereu(p;) is a self-energy depending on the local density,pulsion is chosen. This is a self-energy per particle which is
such that guadratic in the local density.
In terms of force laws, the standard DPD model as speci-
u’(p) = aveAlp). (12 fied in Eq.(3) with A<O is augmented by the addition of a

Comparing Eq.(11) with Eq. (4), it is clear that there has many-body force law of the form

been aprofound shift in perspectivdrom a potential func- -
tion expressed in terms of soft pair potentials, to one ex- Fﬁ=B(pi+pj)Wc(ri,-)e,j , (13
pressed in terms of density-dependent self energies.

There have recently been many discussions of the thermo- o . Cm— .
dynamic consistency of density-dependent interactions in th her§B>_0. Th|s_ is Eq.(6) with A(p)=2Bp. The weight
unction in this is chosen to b&c(r)=(1-r/rq) for r

literature[27,29—-31. However, for the present formulation , - 3 5
all thermodynamic relations are valid because the underlying~"d- This means thaw,(r) =15/(2mrg)(1—r/rg)® (nor-
potential U({r;}) is a well-defined, density-independent mallged for three leensmms' used .to construct t'he local
function of the particle positions. This is important because id€NSity andaye= /30 for this particular interaction.
means for instance the virial equation for the pressure or !N terms of potentials, this model can be interpreted as
stress tensor, constructed out of the forces, can be used witfRllows. Define a generalized weight function of rarigeia
out change.

If u(p) is a polynomial inp of ordern, it is easy to sh_ow Wp(r;R)=15/(277R3)(1— rIR)2. (14)
that Z;u(p;) expands to a sum oven(-1)-body density-
independent potentials. Fap) = a\zAp, standard DPD is o
recovered. Then definetwo local densitiesp and p, constructed using

It is worth emphasizing, contrary to some hints in thethis weight function withR=r, and R=r4, respectively.
literature[13,15], that (U({r;})) is the internal energy and The self-energy per particle for this specific model can be
notthe excess free energlyere(- - -) is a thermal averagelt  written as
follows from Egs.(8) and (11) that the mean-field EOS is
pwe=pkeT+ p2u’(p). A standard thermodynamic result for . 4 _
the true pressure is= pkgT+ p2f{&)’ (p) wheref(&(p) is u=(m/30)Ap+ (7T /30)Bp?. (15
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This is at most quadratic in the local densities, and thus the IS———————— T
model could be written out explicitly in terms of two- and
three-body interaction potentials. From this, the mean-field
; =
EOS is ~ 10k
B~
42 &£
pue=pkeT+ (7/30)(A+2Brip)p?. (16) S
[ i
Thus, with A<0 andB>0, this EOS has the potential to S
contain a van der Waals loop. The actual EOS differs from
this systematically, as will now be described. P/ S S S
0 20 0 , 60 80 100
(a) p

IV. SIMULATION RESULTS

The properties of the above model are now explored by
simulation. First the actual EOS is examined, then vapor-
liquid coexistence and the properties of a stable vapor-liquid
interface are given, and finally we illustrate the potential ap-
plication of the method with a simple pendant droplet simu-
lation. Typical simulations presented here are in simulation
boxes of size 1®(units ofr).

A. Equation of state

For B=0 andA>0, the standard DPD model, the simu- A . N .

lations recover the accepted EQS with very small correc- (b) P2
tions of ~p3. Results are shown in Fig(d).

For A>0 andB>0 a large number of simulations were
performed. After some experimentation, the data were foun
to collapse to the following empirical EOS:

FIG. 1. Data collapse of pressure against dens#yStandard
EPD model, forp=1-10,A=0-50, anckgT=1. The straight line
Is a fit to data given by Eq(5) in the text.(b) Many-body DPD
model, forp=1-10,A=0-50, Bri=0-10,ksT=1, andry=0.5
_ 2 4 2, (squarey 0.75 (diamonds$, and 1.0(crosses The ordinate is the
P=pkeT+ahp™+2aBrap™(p—c), (17 fugctionF=(pfpkBTfaApszaBrﬁp"’)/Brg‘. Plotted this way,
the data collapse onto approximately straight lines, where the slope
wherea takes the same value as for standard OBEd thus ~ depends primarily ong . All quantities are expressed in DPD units.
this expression contains the corrét0 limit), andc is an
empirical correction to the density that appears in the many- B. Vapor-liquid coexistence
body term. This should be compared to the mean-field pre-
diction in Eq. (16). A representative sample of the data is  For vapor-liquid coexistence, sé&t<0 andB>0 so that
shown in Fig. 1b), where it is seen that Eq17) captures there is a van der Waals loop in the EOS. Phase separation is
most of the systematic variation & B, r,, andp vary,  foundina range of densitigs,< p<p, wherep, andp, are
providedc is allowed to vary withr 4 as given in Table I. the vapor and liquid coexistence densities.
For some parameter sets, the temperature was found 10 |5 principle, integration of the EOS gives the free-energy
shpw strong dgwauops from the ”O'T?'“%'Tzl’ as a result density from which predictions can be made abpytand
of instabilities in the integration algorithm. Results were onIypL Unfortunately, the EOS must deviate from the above
. oY 0 ) . s
e po i o fo 1 tereore he vapor phase is na
100 Ia.rge or the densities too high, igr too small. The inte- Squatgly chargctenzgd. For appllcatlons,. one is most mter—
. ) ested inp, =1 in coexistence with a very dilute vapor. If this

gration algorithm is that described in Groot and Warf2f . = . . :
with a time stepAt=0.05 andh = 1/2. The instabilities can is true, it is much easier to use the EOS to predict the point

be vanquished by makingt smaller. _ _
The measured equation of state is therefore quite close to TABLE I. Density correction “constant” for the many-body

the predicted mean-field equation of state. The main differferm in measured EOS, as a functionrgf. There is little signifi-
ence is a correction to the density dependence of the mang@nt dependence on other parametérs, andp [see, e.g., Fig.
body term. This is expected since the pair correlation funcd(D)]. Figures in brackets are estimates of the error in the final digit.
tion g(r)<1 where the repulsions are strongest and thus
(piY<p. This effect has also been checked in simulations by "¢
monitoring the mean value of the local density, with results ¢ 4.05) 4.1(2) 3.075) 2.085) 1.295)
similar to those reported by Trofimaat al. [15].

0.50 0.65 0.75 0.85 1.00
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o~ T " T " T " T — ] TABLE Il. The two parameter sets used in subsequent simula-
tions. The sets are distinguished by the different values of the liquid
densitiesp, . The coexisting vapor densif, <1, so these param-
20 T eters are suitable for free-surface simulations. Also shown are the
interface widthw, surface tensiomr, and compressibility gb=p,
=, -40F - estimated from the EOS. All results areratkgT=1.
ok ) Set A B Iy L w o aplap
5 —-40 40 0.75 5.08) 0.785 4.953) 492
80+ 6 —-40 25 0.75 6.08) 0.663) 7.454) 472
L 1 L 1 L 1 L 1 L
0 20 40 60 80 100 , o
(a) P Figure 2b) shows the prediction of the EO38) compared
directly against the measured pressures, for these two param-
eter sets.

For these two parameter sets, the coexisting vapor and
liquid densities were determined from the vapor-liquid inter-
face profile simulations described in the next section and are
shown as a function d€zT in Fig. 3. WherekgT# 1 in these
simulations, the values ok and B are left at the values in
Table II; in other wordsA and B are regarded as absolute
interaction energies. Also shown in Fig. 3 are the appropriate
solutions ofp=0 using the EOS18).

It is clear that the difference, —py gets smaller ag
increases, as one approaches the expected vapor-liquid criti-
cal point. AtkgT=<1, py<<1 indicating that the vapor phase
is virtually devoid of particles. AkgT=1 the solution top
=0 for the EOS gives a good estimate of the density of the
fluid phase.

The EOS can also be used to estimate the compressibility
apldp at p=p_, and the values are shown in Table Il. Al-

straight line is a fit to data given by E(L8) in the text.(b) Pressure though the precise value is not important, the fact that

as a function of density for the two selected parameter sets in Tabl@p/ap>1 at the .CoeX|St|n.g ﬂu'd. densn;(where r_')wO) o
Il. The lines are the predictions of the fitted EOS, Etg) in the shows that the fluid phase is relatively incompressible, simi-

text. All quantities are expressed in DPD units. lar to a real liquid.

FIG. 2. (a) Data collapse of pressure against density, gor
<p=8, A<O0, |A|=20-40,B=25 or 40,kgT=1, andry=0.75.
The ordinate is the functioR defined in the caption to Fig. 1. The

) i o C. Vapor-liquid interface
where the pressure vanishes as an estimate of the coexisting

liquid phase density. Thys(p, ) =0. Using this, one expects
liquid densities of the ordep, ~5 for —A~B~30. From

Simulations of the vapor-liquid interface were undertaken
by taking an equilibrated volume of fluid in a periodic box at

here on the range of the many-body repulsion is set4to 30— 1T — T
=0.75 as a midrange value determined above. - Set 50 11 Set ‘6 1
Since the above EOS was measuredAor0, one has to 2.5 1r T
be careful to check that the scaling collapse still holds. One I 17 T
cannot easily measure the EOS within the phase separation 20 7] T
region, since it is hard to maintain a stable uniform density. &~ L5k 110 )
Therefore the EOS has been characterized giorp, . A £ 11 ]
similar data collapse is found to the previous section, as is 1.0 ! 4 i

shown in Fig. 2a). In this case, the EOS can be fitted by % 11
0.5 - .

p=pkgT+ aAp?+2aBri(p®—cp?+d), (18)
00 1 1 1 1 1 1

where «=0.101(1) as beforec=4.162), andd=18(1). P P
The value ofc is similar to the value obtained previously  gg 3. pensity-temperature phase diagrams for the two param-
[c=3.075), Table I|. There is an additional offset terth  eter sets in Table II, keeping and B fixed. Shown horizontal are
which is about 10% of the density correction tecp? inthe  tie-lines computed from vapor-liquid interface profiles, at several
region of interest. temperaturegkeepingA andB fixed). The short vertical line on the
Although a wider parameter space was explored, two pakgT=1 tie-line is the point where the pressure vanishes according
rameter sets were selected for more detailed work. These the fitted EOS(18) in the text. All quantities are expressed in
parameter sets are given in Table(first three columns  DPD units.
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0T — T T T T T T 71—

6.0

QUAOF™ S
4_
2.0 L
00 90 2.5
(a)
FIG. 4. Interfacial density profiles for the two parameter sets in 25
Table I, for several values of the temperatkeepingA and B
fixed): kgT=1 (solid line), kgT=2 (chained ling, andkgT=0.5
(dashed ling Distance through the interface 2sThe zero ofz is 201
arbitrarily chosen. All quantities are expressed in DPD units.
L5k
a density close to thp=0 limit and removing the particles 3
in one-half of the box. The system was allowed to evolve L.of
until an equilibrium density profile was obtained. Interface
profiles and surface tension values were measured as de- 0.5t
scribed for fluid-fluid interface$10]. For measurement of I
density profiles, it was necessary to stop the interface drifting e S
over time. This was achieved by inserting a thin slab of (b) 0 0.3 1.ok T L5 20 25
B

“frozen” particles of thicknessr. at one end of the box,
where “frozen” means that the particle positions are fixed FIG. 5. (a) Interfacial tensions and (b) interface widthw, as a

and _the velocities are guenched to .zero. ) . function of temperatur&gT, for the two parameter sets in Table I
Figure 4 shows the interface pfoﬁles obtained this way for(keepingA andB fixed): set 5(solid line9 and set §dashed lines
the two selected parameter sets in Table Il. These are shov) quantities are expressed in DPD units.

at several different values &g T keepingA andB fixed. The

construct the tie-lines discussed in the previous se¢t  model free surfaces. Table Il also contains the measured in-
3). As the temperature is increased, the interfacial width terfacial properties.

gets broader, and the surface tensiodrops. Results forr
andw are shown in Fig. 5. The widtlwv was quantified by

calculating the maximum slope and normalizing to the coex- D. Pendant droplet simulation

istence densities, thus As an example application, the classic pendant drop prob-
lem is now treated. The procedure is very similar to the one

W PL— Pv (19 adopted for the DPD multiphase fluid modéD].
maxdp/dz To set up the pendant droplet, a volume of fluid at a den-

sity close to the equilibrium liquid density was equilibrated,

The surface tension is determined from the standard mehen replicated to construct a cylindrical column with the
chanical definition of the pressure teng@0]. Note again axis parallel to thez direction. A “support” was constructed
that there is no problem with the many-body origin of theby “freezing” particles in a slice of thickness 215 at the
force laws. The actual forces enter the calculation in exactlyop of the column so that their positions do not change and
the same way as standard DPD. their velocities are quenched to zero. A gravitational body

Low temperature favors a sharp interface, but if the temforce g was included by adding a constant force per particle
perature is too low, oscillations develop in the profile on thedirected along the direction away from the support. When
liquid side of the interface. This can be seen most clearly irthe system reaches equilibrium, the liquid forms a pendant
Fig. 4 forkgT=0.5. The system has crossed a Fisher-Widondroplet suspended from the support particles. In equilibrium,
line in the phase diagram, and a freezing transition is almoshe drop profile(radius as a function of heighivas obtained
certainly nearby. The relative amplitude of the oscillationsas described below. The whole simulation takes a couple of
can be measured, and they are typically 10% of the bulkninutes on a modern workstation. The droplet contains typi-
density atkkgT=0.5, but<2% forkgT=0.75, at least for the cally ~3000 particles.
two sets of parameters studied here. The profile was determined as follows. Al 3nesh was

Thus the two parameter sets given in Table Il provide forintroduced with a resolution typically=0.5r, (higher reso-
a sharp vapor-liquid interface, &T=1, with virtually no  lution was employed in the direction). The local particle
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26T T T TABLE Ill. Pendant drop profile data. Interaction parameters
I are taken from Table Il, according to the first digit of “Set.” The
24_ ] penultimate column is the surface tension computed from the drop
2 4 shape, and the final column is the “exact” surface tension from
3 Table I, computed by integration of the pressure tensor through a
u 20 7 planar interface.
18 .
F Set g PL AE B 1H(B) Oshape  Oexact
16 —
. 5a 0.022 5.08 8.86) 0.378 0.573) 4.93) 4.953)
14 7 6f 0.025 6.05 9.066) 0.378 0.573) 7.05 7.454)
12(; S 8 6h 0.033 6.05 8.75) 0.404 052) 7.94) 7.454)
6 0.030 6.05 8.1) 0431 04 6.65 7.454
(a) (b) r g 76) &) &5 54)

FIG. 6. Pendant droplet problerta) isosurface cut throughd3
density field atp=p, /2, showing the drop profile; antb) drop  directly from the interfacial profiles. The drop profiles all
radiusr as a function of heighz, computed by the method de- match the measured profiles quite accurately; see, for ex-
scribed in the text. The zero afis arbitrarily chosen. The solid line ample, Fig. 6b).
is the Young-Laplace equation prediction; the circles are the mea-
sured profile. The “frozen” support particles at the top of the drop V. DISCUSSION
give a ragged edge to the top of the isosurfac@jrand distort the
measured profile for=23 in (b). Parameters correspond to set 6h  The model developed here can be discussed in several
in Table IIl. All distances are expressed in unitsref contexts. First, it is a new simulation method for fluid me-

density | h h vol | db chanics problems involving liquids with free surfaces. For
ensity in each mesh volume € e.mef.“ was compute_ y aVe'xample, the above pendant droplet problem is a test of the
eraging over a period of time. This gives d 8ensity field.

The droplet can then be imaned as an isosurface or level Catatic force balance and the results show that the DPD fluid
P 9 eys the Young-Laplace equation in a nontrivial geometry.

. . . . . . 0
g}goue%g) this density field, and a typical result is shown InOne can conclude that this particular version of many-body

To determine the drop radius as a function of height, th(PPD offers a'via.lble. route .for. soI.ving capillary problem;
density field was dividedor “segmented) into occupied such as the.dlstrlbutlon of liquids in porous materla!s. It' is
and unoccupied cells according to whethgr)>p, /2 or clearly possible to addrt_ass dynamic fo_rce balance situations
not. The number of occupied cells at each heighias used tpo, but these will require further testing and parametriza-
to compute the cross-sectional area of the droplet at thdton, particularly for the notorious problem of contact line
height and, therefore, the drop radius as a functioz. ¢§  dynamics.
typical drop profile is shown in Fig.(B). Second, now that vapor-liquid equilibrium is achieved for

This indirect procedure to determine the droplet radiusd basic soft sphere model, one can “dress” the liquid up in
eliminates two possible artifacts. First, it removes the blurvarious ways such as making the liquid particles into poly-
ring of the base of the drop by the interface profile, whichmers or model amphiphiles. In this way, new methods can be
would otherwise be-(0.7—0.8) .. Second, it eliminates ef- constructed to simulate complex fluids with anplicit sol-
fects due to the variation of fluid density with height which vent. These developments are the subject of ongoing inves-
might otherwise introduce a systematic error if the mean partigations and will be reported separately.
ticle number density as a function of height was computed In a third context though, the reinterpretation of many-
directly. Such a variation of density with height is to be body DPD as a fluid whose potential energy is built out of
expected, since the fluid responds to the varying pressudecal-density-dependent one-particle self-energies is quite
field through the EOSi.e., it is still a compressible fluid, novel from the point of view of liquid-state theory. Most
even if only weakly sh previous work has concentrated on fixed pair potentials with

The drop profile was analyzed by normalizing with re- hard cores, and only minor attention has been paid to soft
spect to the maximum diamet&E and comparing with a set potentials or density-dependent pair potentials. The present
of precalculated profiles as the Bond numiger p, gb?/c work though goes some way beyond these existing ideas.
varies(whereb is the radius of curvature of the base of the It has long been recognized that an arbitrbif{r;}) can
dropled. The profiles are calculated from the Young-Laplacebe expanded as a sum over density-independent one-body,
equation as described in earlier wddQ]. From the best-fit two-body(pair potentia), etc., terms. Normally the one-body
B value, the surface tension can be computed from terms, or self-energies, are harmless constants which can be
=p. gAE?/H whereH(p) is a dimensionless function com- discarded, and most of the phenomena observed for liquids
puted numerically. can be captured by truncating the expansion at the pair po-

Table Il shows the quantities computed for several dropstential level. If one allows the pieces in such an expansion to
for both parameter sets, and for several valueg éithough  acquire a density dependence though, then the one-body self
the surface tensions determined this way are not very precisenergy is no longer necessarily a constant, and it is no longer
they are all consistent with the accurate values calculatedecessary to go to the pair potential level to see interesting
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physics. Many-body DPD as described here is an example @fre presumably still present, as indicated by the presence of

precisely this. oscillations in the liquid side of the vapor-liquid interface in
The phase behavior of the present model is also poterfig. 4. In such a case, the collision between the vapor-liquid

tially very interesting. By analogy with related soft-core sys-transition and these ordered phases could prove to generate

tems such as the Gaussian core m¢ii2|32 and models for rather unusual phase behavior, and the low-temperature

polymers of various architecturg33,34], the particles in the properties of many-body DPD models may well be worth

original DPD model are expected to freeze into a variety offurther examination.

ordered phases at low temperatures and intermediate densi-

tl_es, with a reentrant fluid phase at hl_gh d¢n3|t|es. The ver- ACKNOWLEDGMENT

sion of many-body DPD presented in this paper is con-

structed to have a significant vapor-liquid coexistence region, | thank R. D. Groot for many discussions in the early
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