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Vapor-liquid coexistence in many-body dissipative particle dynamics

P. B. Warren
Unilever R&D Port Sunlight, Bebington, Wirral, CH63 3JW, United Kingdom

~Received 4 June 2003; published 18 December 2003!

Many-body dissipative particle dynamics is constructed to exhibit vapor-liquid coexistence, with a sharp
interface, and a vapor phase of vanishingly small density. The application to fluid mechanics problems involv-
ing free surfaces is illustrated by simulation of a pendant drop. The model is an unusual example of a
soft-sphere liquid with a potential energy built out of local-density-dependent one-particle self-energies.
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I. INTRODUCTION

Dissipative particle dynamics~DPD! is familiar as a
method of simulating complex fluids at a coarse grain
level @1,2#, for example block copolymer polymer mel
@3,4#, and surfactant solutions@5,6#. DPD has also been use
for multiphase fluid problems, such as phase separation
netics in binary liquid mixtures@7–9#, droplet deformation
and rupture in shear fields@10#, and droplets on surface
under the influence of shear fields@11#. The advantage o
DPD for these kind of problems lies in the simplicity of th
underlying algorithm, and the physical way in which singu
events such as droplet rupture are captured. Such cons
ations also make the method attractive forfree-surfacefluid
dynamics problems. Examples of these include various ki
of wetting, spreading, wicking, and capillary problems. To
used for these kind of problems, DPD needs to be exten
to allow for vapor-liquid equilibrium. In this way a free su
face will arise naturally as a vapor-liquid interface, and su
an interface will possess the same physics as a clean va
liquid interface.

To achieve vapor-liquid coexistence in DPD, for a sing
component system, requires a van der Waals loop in
equation of state~EOS! ~pressure-density curve!. However,
this presents a fundamental limitation for standard D
since the soft interaction forces used in the method inv
ably lead to a predominantly quadratic EOS@12#. One way
around this is the ‘‘many-body’’ DPD method invented b
Pagonabarraga and Frenkel@13,14# and also investigated b
Trofimov et al. @15#. In many-body DPD, the amplitude o
the soft repulsions is made to depend on the local density
this way one can achieve a much wider range of possibili
for the EOS.

A similar approach to simulating liquid-vapor interfac
was introduced by Nugent and Posch in the context
smoothed particle applied mechanics~SPAM!, also known as
smoothed particle hydrodynamics~SPH! @16#. The connec-
tion between many-body DPD and SPAM and SPH has b
greatly clarified recently by Espan˜ol and Revenga@17#, who
introduce a ‘‘smoothed DPD’’~SDPD! method as an SPH
variant based on a new formalism developed for discr
hydrodynamics@18#.

In the present work, many-body DPD is developed to
hibit vapor-liquid coexistence, with a sharp interface, an
vapor phase of vanishingly small density. The approa
taken is fundamentally the same approach as used in R
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@13# and@15#, but with a somewhat different interpretation o
the same mathematics. Therefore a general theory for m
body DPD is described first. It can be argued that this
volves a fundamental reinterpretation of the DPD interact
potentials. The specific implementation for vapor-liqu
equilibrium is described next, and finally the application
free-surface problems is illustrated by simulation of a pe
dant droplet. Another application to vapor-liquid phase se
ration kinetics was described in an earlier note@19#.

II. GENERAL THEORY

Dissipative particle dynamics is basically molecular d
namics@20,21#, with two key innovations. The first, and pe
haps the most profound, is the use of soft interactions. T
stands in contrast to the common use of interaction poten
corresponding to particles with hard cores—for examp
Lennard-Jones interactions or modified hard-sphere inte
tions. The second innovation is the use of a thermostat wh
conserves momentum locally. This allows one to simulate
a well-defined temperature yet preserve hydrodynamics,
this can be important for some problems such as phase s
ration kinetics. The thermostat described below is the or
nal ~Español-Warren! thermostat@22#, although the Lowe-
Andersen thermostat is perhaps simpler and more effic
@23#. In the present paper, the focus is on the equilibriu
properties of many-body DPD models for which the natu
of the thermostat is unimportant.

The particles in DPD have positionsr i and velocitiesvi ,
where i 51 –N runs over the set of particles, moving in
simulation box of volumeV. They move according to the
kinematic conditiondr i /dt5vi and Newton’s second law
dvi /dt5Fi /mi wheremi is the mass of thei th particle. Here

Fi5Fi ,ext1(
j Þ i

Fi j ~1!

is the total force acting on thei th particle, comprising a
possible external forceFi ,ext and forcesFi j due to the inter-
action between thei th and j th particles. The interaction
forces are decomposed into conservative, dissipative,
random contributions:

Fi j 5Fi j
C1Fi j

D1Fi j
R . ~2!
©2003 The American Physical Society02-1
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The individual contributions all vanish for particle separ
tions larger than some cutoff interaction ranger c , and all
obey Newton’s third law so thatFi j 1Fj i 50.

The conservative force is

Fi j
C5AwC~r i j !ei j , ~3!

where r i j 5r j2r i , r i j 5ur i j u, and ei j 5r i j /r i j . The weight
function wC(r ) vanishes forr .r c and, for simplicity, is
taken to decrease linearly with particle separation; t
wC(r )5(12r /r c). The overall magnitude of the force law
determined by the amplitudeA, which is the main paramete
which is allowed to vary.

The force law in Eq.~3! corresponds to a total potentia
energy which is a sum of pair potentials:

U~$r i%!5(
j . i

f~r i j !, ~4!

where2f 8(r )5AwC(r ), and thusf(r )5(A/2)(12r /r c)
2

for standard DPD. The dissipative and random forces
Fi j

D52gwD(r i j )(vi j •ei j )ei j and Fi j
R5swR(r i j )j i j ei j . In

theseg and s are amplitudes,wD(r ) and wR(r ) are addi-
tional weight functions also vanishing forr .r c , vi j 5vj
2vi , and j i j 5j j i is pairwise continuous white noise wit
^j i j (t)&50 and ^j i j (t)jkl(t8)&5(d ikd j l 1d i l d jk)d(t2t8).
The dissipative and random forces act as the abo
mentioned thermostat provided that the weight functions
amplitudes are chosen to obey a fluctuation-dissipation th
rem: s252gkBT andwD5(wR)2, wherekBT is the desired
temperature in units of Boltzmann’s constantkB @22#. The
same weight function is used as for the conservative for
~basically for historical reasons!: wR5wC andwD5(wC)2.

Usually all the particles are assumed to have the sa
mass, and to fix units of mass and length a convenient ch
is to setmi5r c51. Often the units of energy and hence tim
are fixed by settingkBT51, but for equilibrium simulations
it can be convenient to keepkBT as a free parameter.

The integration of the equations of motion is a nontriv
matter since one has to accommodate the random forces
an integration algorithm, Groot and Warren investigated
version of the velocity-Verlet scheme used in molecular
namics simulations@2#, but it was later shown by den Otte
and Clarke that this is not a real improvement over a sim
Euler-type integration scheme@24#. More extensive studies
have been undertaken by Vattulainenet al. @25#. Alterna-
tively, the Lowe-Andersen thermostat can be used, whic
based on distinctly different physical ideas@23#. All the
simulations described below were carried out with the sim
velocity-Verlet-like algorithm described by Groot and Wa
ren, with due care taken to avoid artifacts due to the fin
size of the time step.

For a single-component DPD fluid, the equation of st
gives the pressurep as a function of the densityr5N/V. For
the soft potential given above, the EOS is now well est
lished to be@2#

p5rkBT1aAr2, ~5!
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wherea50.10160.001 is very close to the mean-field pr
diction aMF5p/3050.1047~see also below!. The first term
in the EOS is an ideal gas term, and the second term is
excess pressure, which is almost perfectly quadratic in
density~there is a very small correction of orderr3). Note
though thataA is not the second virial coefficient@12#, so
the above EOS is expected to break down forr&1. It seems
that a quadratic EOS like this is unavoidable for soft pote
tials @12#. This represents the fundamental limitation to ba
DPD mentioned in the Introduction. Moreover, one has
take force law amplitude in Eq.~3!, A>0 ~otherwise the
pressure diverges negatively at high densities!, so one is re-
stricted to a strictly positive compressibility]p/]r.0. In
fact, makingA,0 throws the DPD pair potential into a for
mal class of catastrophic potentials for which it can be r
orously proved that there is no thermodynamic limit@12,26#.
The situation is not as grim as it might seem though sin
considerable progress can be made for applications by in
ducing different species of particles and allowing them to
differentiated by their repulsion amplitudes; thusA→Ai j in
Eqs.~3! and ~4!.

For the one-component fluid, an obvious way to g
around the problem of a quadratic EOS is to make the a
plitude A in the force law dependent on density someho
Such a scheme has been examined by several wor
@13,15# and proves to be a simple extension to DPD. T
many-body DPD requires only a modest additional com
tational cost, but throws open the possibility to simulate s
tems with an arbitrarily complicated EOS. The approach
scribed here introduces a local density into the amplitude
the force law. By being explicit about the construction of t
local density, this is a ‘‘safe’’ way to introduce a densi
dependence into the interactions@27,28#.

In many-body DPD, the force laws are written as

Fi j
C5

1

2
@A~ r̄ i !1A~ r̄ j !#wC~r i j !ei j , ~6!

for a one-component fluid~Trofimov et al. @15# describe a
multicomponent generalization!. A partial amplitudeA( r̄) is
introduced, depending on a weighted local density, which
defined for thei th particle to be

r̄ i5(
j Þ i

wr~r i j !. ~7!

The weight functionwr(r ) vanishes forr .r c and for con-
venience is normalized so that*d3rwr(r )51, although in
principle the normalization could be absorbed into the d
nition of A( r̄ i). The discounted self-contributioni 5 j in Eq.
~7! would only add a constantwr(0) to r̄ i , amounting to a
constant shift of the argument in the definition ofA( r̄ i) ~see
Trofimov et al. @15# for a more extensive discussion on th
point!. The weighted local density is readily computed by
additional sweep through the neighbor list; hence there
only a modest additional computational overhead. IfA( r̄)
5A, the method reduces exactly to the standard DPD mo
2-2
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In mean-field theory, it is easy to show that the modifi
force law should give an EOS

pMF5rkBT1aMF A~r!r2, ~8!

where

aMF5~2p/3!E
0

`

drr 3wC~r ! ~9!

@i.e., aMF5p/30 for the standard choice ofwC(r )]. Thus, in
principle, an arbitrary dependence on density can be rec
ered.

This is not the end of the story though. The existence o
potential energyU($r i%) such thatFi52]U/]r i requires the
forces to obey a ‘‘Maxwell relation’’ of the type]Fi /]r j
5]Fj /]r i . This is a nontrivial requirement since the partic
positions appear both directly in Eq.~6! and indirectly
through the definition of the local density in Eq.~7!. One can
show a necessary and sufficient condition for it to be true
that the derivativewr8 is proportional towC, so the two
weight functionswr and wC are not independent. One ca
then prove from the normalization condition onwr(r ) that

2wr8~r !5wC~r !/2aMF , ~10!

whereaMF is defined in Eq.~9!.
What, then, is the corresponding potential? The answe

U~$r i%!5(
i

u~ r̄ i !, ~11!

whereu( r̄ i) is a self-energy depending on the local dens
such that

u8~ r̄ !5aMF A~ r̄ !. ~12!

Comparing Eq.~11! with Eq. ~4!, it is clear that there has
been aprofound shift in perspective, from a potential func-
tion expressed in terms of soft pair potentials, to one
pressed in terms of density-dependent self energies.

There have recently been many discussions of the ther
dynamic consistency of density-dependent interactions in
literature @27,29–31#. However, for the present formulatio
all thermodynamic relations are valid because the underly
potential U($r i%) is a well-defined, density-independe
function of the particle positions. This is important becaus
means for instance the virial equation for the pressure
stress tensor, constructed out of the forces, can be used
out change.

If u( r̄) is a polynomial inr̄ of ordern, it is easy to show
that ( iu( r̄ i) expands to a sum over (n11)-body density-
independent potentials. Foru( r̄)5aMFAr̄, standard DPD is
recovered.

It is worth emphasizing, contrary to some hints in t
literature @13,15#, that ^U($r i%)& is the internal energy and
not the excess free energy~here^•••& is a thermal average!. It
follows from Eqs.~8! and ~11! that the mean-field EOS i
pMF5rkBT1r2u8(r). A standard thermodynamic result fo
the true pressure isp5rkBT1r2f N

(ex)8(r) where f N
(ex)(r) is
06670
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the excess free energy per particle. This shows that the in
pretationu[ f N

(ex) is a mean-field approximation and, as suc
will be spoiled by correlation effects. Note also that corre
tions mean, typically, ^r̄ i&Þr, and ^u( r̄ i)&Þu(^r̄ i&)
Þu(r). Trofimov et al.give results for the mean local den
sity and suggest ways that one might improve the corresp
dence between̂ r̄ i& and r. Here a different approach i
taken, in whichr̄ i is regarded as a convenient intermedia
quantity which is used to construct the forces; as such i
not important that its average differs fromr. In practice, like
Trofimov et al., the mean-field EOS for many-body DPD ca
be considerably less accurate compared to standard D
Thus the method always requires calibration to determine
true thermodynamic properties~the approach of Trofimov
et al.can be used to achieve a specific EOS!.

III. SPECIFIC MODEL

A specific application of these ideas to set up a DP
model which exhibits vapor-liquid coexistence is now d
scribed. Before this, though, there is one more techn
point to discuss.

To stabilize the vapor-liquid interface, it is not sufficie
just to have a van der Waals loop in the EOS; one must a
give consideration to the ranges of the interactions. T
simple many-body DPD with a single range may not hav
stable interface as discussed by Pagonabarraga and Fr
@13#. The trick employed here is to take the standard D
model, make the soft pair potential attractive, and add o
repulsive many-body contribution with adifferent ranger d
,r c . Furthermore, the simplest form of the many-body
pulsion is chosen. This is a self-energy per particle which
quadratic in the local density.

In terms of force laws, the standard DPD model as spe
fied in Eq.~3! with A,0 is augmented by the addition of
many-body force law of the form

Fi j
C5B~ r̄ i1 r̄ j !wC~r i j !ei j , ~13!

whereB.0. This is Eq.~6! with A( r̄)52Br̄. The weight
function in this is chosen to bewC(r )5(12r /r d) for r
,r d . This means thatwr(r )515/(2pr d

3)(12r /r d)2 ~nor-
malized for three dimensions! is used to construct the loca
density andaMF5pr d

4/30 for this particular interaction.
In terms of potentials, this model can be interpreted

follows. Define a generalized weight function of rangeR via

wr~r ;R!515/~2pR3!~12r /R!2. ~14!

Then definetwo local densitiesr̄ and r̄̄, constructed using
this weight function withR5r c and R5r d , respectively.
The self-energy per particle for this specific model can
written as

u5~p/30!Ar̄1~pr d
4/30!Br̄̄ 2. ~15!
2-3
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This is at most quadratic in the local densities, and thus
model could be written out explicitly in terms of two- an
three-body interaction potentials. From this, the mean-fi
EOS is

pMF5rkBT1~p/30!~A12Brd
4r!r2. ~16!

Thus, with A,0 and B.0, this EOS has the potential t
contain a van der Waals loop. The actual EOS differs fr
this systematically, as will now be described.

IV. SIMULATION RESULTS

The properties of the above model are now explored
simulation. First the actual EOS is examined, then vap
liquid coexistence and the properties of a stable vapor-liq
interface are given, and finally we illustrate the potential a
plication of the method with a simple pendant droplet sim
lation. Typical simulations presented here are in simulat
boxes of size 103 ~units of r c).

A. Equation of state

For B50 andA.0, the standard DPD model, the sim
lations recover the accepted EOS~5! with very small correc-
tions of ;r3. Results are shown in Fig. 1~a!.

For A.0 andB.0 a large number of simulations wer
performed. After some experimentation, the data were fo
to collapse to the following empirical EOS:

p5rkBT1aAr212aBrd
4r2~r2c!, ~17!

wherea takes the same value as for standard DPD~and thus
this expression contains the correctB50 limit!, andc is an
empirical correction to the density that appears in the ma
body term. This should be compared to the mean-field p
diction in Eq. ~16!. A representative sample of the data
shown in Fig. 1~b!, where it is seen that Eq.~17! captures
most of the systematic variation asA, B, r c , and r vary,
providedc is allowed to vary withr d as given in Table I.

For some parameter sets, the temperature was foun
show strong deviations from the nominalkBT51, as a result
of instabilities in the integration algorithm. Results were on
kept if the measuredkBT lay within 10% of the nominal
value. These problems occur if the repulsion amplitudes
too large or the densities too high, orr d too small. The inte-
gration algorithm is that described in Groot and Warren@2#,
with a time stepDt50.05 andl51/2. The instabilities can
be vanquished by makingDt smaller.

The measured equation of state is therefore quite clos
the predicted mean-field equation of state. The main dif
ence is a correction to the density dependence of the m
body term. This is expected since the pair correlation fu
tion g(r ),1 where the repulsions are strongest and t
^r̄ i&,r. This effect has also been checked in simulations
monitoring the mean value of the local density, with resu
similar to those reported by Trofimovet al. @15#.
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B. Vapor-liquid coexistence

For vapor-liquid coexistence, setA,0 andB.0 so that
there is a van der Waals loop in the EOS. Phase separati
found in a range of densitiesrV,r,rL whererV andrL are
the vapor and liquid coexistence densities.

In principle, integration of the EOS gives the free-ener
density from which predictions can be made aboutrV and
rL . Unfortunately, the EOS must deviate from the abo
fitted form for r!1; therefore the vapor phase is ina
equately characterized. For applications, one is most in
ested inrL*1 in coexistence with a very dilute vapor. If thi
is true, it is much easier to use the EOS to predict the po

FIG. 1. Data collapse of pressure against density.~a! Standard
DPD model, forr51210,A50 – 50, andkBT51. The straight line
is a fit to data given by Eq.~5! in the text.~b! Many-body DPD
model, forr51–10,A50 – 50, Brd

450 – 10, kBT51, andr d50.5
~squares!, 0.75 ~diamonds!, and 1.0~crosses!. The ordinate is the
function F5(p2rkBT2aAr222aBrd

4r3)/Brd
4 . Plotted this way,

the data collapse onto approximately straight lines, where the s
depends primarily onr d . All quantities are expressed in DPD unit

TABLE I. Density correction ‘‘constant’’ for the many-body
term in measured EOS, as a function ofr d . There is little signifi-
cant dependence on other parametersA, B, and r @see, e.g., Fig.
1~b!#. Figures in brackets are estimates of the error in the final d

r d 0.50 0.65 0.75 0.85 1.00

c 4.0~5! 4.1~1! 3.07~5! 2.08~5! 1.29~5!
2-4
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VAPOR-LIQUID COEXISTENCE IN MANY-BODY . . . PHYSICAL REVIEW E68, 066702 ~2003!
where the pressure vanishes as an estimate of the coex
liquid phase density. Thusp(rL)50. Using this, one expect
liquid densities of the orderrL;5 for 2A;B;30. From
here on the range of the many-body repulsion is set tor d
50.75 as a midrange value determined above.

Since the above EOS was measured forA.0, one has to
be careful to check that the scaling collapse still holds. O
cannot easily measure the EOS within the phase separ
region, since it is hard to maintain a stable uniform dens
Therefore the EOS has been characterized forr.rL . A
similar data collapse is found to the previous section, a
shown in Fig. 2~a!. In this case, the EOS can be fitted by

p5rkBT1aAr212aBrd
4~r32cr21d!, ~18!

where a50.101(1) as before,c54.16(2), andd518(1).
The value ofc is similar to the value obtained previous
@c53.07(5), Table I#. There is an additional offset termd
which is about 10% of the density correction termcr2 in the
region of interest.

Although a wider parameter space was explored, two
rameter sets were selected for more detailed work. Th
parameter sets are given in Table II~first three columns!.

FIG. 2. ~a! Data collapse of pressure against density, forrL

,r&8, A,0, uAu520– 40,B525 or 40,kBT51, andr d50.75.
The ordinate is the functionF defined in the caption to Fig. 1. Th
straight line is a fit to data given by Eq.~18! in the text.~b! Pressure
as a function of density for the two selected parameter sets in T
II. The lines are the predictions of the fitted EOS, Eq.~18! in the
text. All quantities are expressed in DPD units.
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Figure 2~b! shows the prediction of the EOS~18! compared
directly against the measured pressures, for these two pa
eter sets.

For these two parameter sets, the coexisting vapor
liquid densities were determined from the vapor-liquid inte
face profile simulations described in the next section and
shown as a function ofkBT in Fig. 3. WherekBTÞ1 in these
simulations, the values ofA and B are left at the values in
Table II; in other words,A and B are regarded as absolu
interaction energies. Also shown in Fig. 3 are the appropr
solutions ofp50 using the EOS~18!.

It is clear that the differencerL2rV gets smaller asT
increases, as one approaches the expected vapor-liquid
cal point. AtkBT&1, rV!1 indicating that the vapor phas
is virtually devoid of particles. AtkBT51 the solution top
50 for the EOS gives a good estimate of the density of
fluid phase.

The EOS can also be used to estimate the compressib
]p/]r at r5rL , and the values are shown in Table II. A
though the precise value is not important, the fact t
]p/]r@1 at the coexisting fluid density~where p'0)
shows that the fluid phase is relatively incompressible, si
lar to a real liquid.

C. Vapor-liquid interface

Simulations of the vapor-liquid interface were undertak
by taking an equilibrated volume of fluid in a periodic box

le

FIG. 3. Density-temperature phase diagrams for the two par
eter sets in Table II, keepingA andB fixed. Shown horizontal are
tie-lines computed from vapor-liquid interface profiles, at seve
temperatures~keepingA andB fixed!. The short vertical line on the
kBT51 tie-line is the point where the pressure vanishes accord
to the fitted EOS~18! in the text. All quantities are expressed
DPD units.

TABLE II. The two parameter sets used in subsequent simu
tions. The sets are distinguished by the different values of the liq
densitiesrL . The coexisting vapor densityrV!1, so these param
eters are suitable for free-surface simulations. Also shown are
interface widthw, surface tensions, and compressibility atr5rL

estimated from the EOS. All results are atr c5kBT51.

Set A B rd rL w s ]p/]r

5 240 40 0.75 5.08~1! 0.78~5! 4.95~3! 49~2!

6 240 25 0.75 6.05~1! 0.66~3! 7.45~4! 47~2!
2-5
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a density close to thep50 limit and removing the particles
in one-half of the box. The system was allowed to evo
until an equilibrium density profile was obtained. Interfa
profiles and surface tension values were measured as
scribed for fluid-fluid interfaces@10#. For measurement o
density profiles, it was necessary to stop the interface drif
over time. This was achieved by inserting a thin slab
‘‘frozen’’ particles of thicknessr c at one end of the box
where ‘‘frozen’’ means that the particle positions are fix
and the velocities are quenched to zero.

Figure 4 shows the interface profiles obtained this way
the two selected parameter sets in Table II. These are sh
at several different values ofkBT keepingA andB fixed. The
limiting densities on either side of the interface were used
construct the tie-lines discussed in the previous section~Fig.
3!. As the temperature is increased, the interfacial widthw
gets broader, and the surface tensions drops. Results fors
and w are shown in Fig. 5. The widthw was quantified by
calculating the maximum slope and normalizing to the co
istence densities, thus

w5
rL2rV

maxudr/dzu
. ~19!

The surface tension is determined from the standard
chanical definition of the pressure tensor@20#. Note again
that there is no problem with the many-body origin of t
force laws. The actual forces enter the calculation in exa
the same way as standard DPD.

Low temperature favors a sharp interface, but if the te
perature is too low, oscillations develop in the profile on t
liquid side of the interface. This can be seen most clearly
Fig. 4 forkBT50.5. The system has crossed a Fisher-Wid
line in the phase diagram, and a freezing transition is alm
certainly nearby. The relative amplitude of the oscillatio
can be measured, and they are typically 10% of the b
density atkBT50.5, but,2% for kBT>0.75, at least for the
two sets of parameters studied here.

Thus the two parameter sets given in Table II provide
a sharp vapor-liquid interface, atkBT51, with virtually no

FIG. 4. Interfacial density profiles for the two parameter sets
Table II, for several values of the temperature~keepingA and B
fixed!: kBT51 ~solid line!, kBT52 ~chained line!, and kBT50.5
~dashed line!. Distance through the interface isz. The zero ofz is
arbitrarily chosen. All quantities are expressed in DPD units.
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particles in the vapor phase. They are thus well suited
model free surfaces. Table II also contains the measured
terfacial properties.

D. Pendant droplet simulation

As an example application, the classic pendant drop pr
lem is now treated. The procedure is very similar to the o
adopted for the DPD multiphase fluid model@10#.

To set up the pendant droplet, a volume of fluid at a d
sity close to the equilibrium liquid density was equilibrate
then replicated to construct a cylindrical column with t
axis parallel to thez direction. A ‘‘support’’ was constructed
by ‘‘freezing’’ particles in a slice of thickness 2.5r c at the
top of the column so that their positions do not change a
their velocities are quenched to zero. A gravitational bo
force g was included by adding a constant force per parti
directed along thez direction away from the support. Whe
the system reaches equilibrium, the liquid forms a pend
droplet suspended from the support particles. In equilibriu
the drop profile~radius as a function of height! was obtained
as described below. The whole simulation takes a couple
minutes on a modern workstation. The droplet contains ty
cally ;3000 particles.

The profile was determined as follows. A 3d mesh was
introduced with a resolution typically<0.5r c ~higher reso-
lution was employed in thez direction!. The local particle

n

FIG. 5. ~a! Interfacial tensions and ~b! interface widthw, as a
function of temperaturekBT, for the two parameter sets in Table
~keepingA andB fixed!: set 5~solid lines! and set 6~dashed lines!.
All quantities are expressed in DPD units.
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VAPOR-LIQUID COEXISTENCE IN MANY-BODY . . . PHYSICAL REVIEW E68, 066702 ~2003!
density in each mesh volume element was computed by
eraging over a period of time. This gives a 3d density field.
The droplet can then be imaged as an isosurface or leve
through this density field, and a typical result is shown
Fig. 6~a!.

To determine the drop radius as a function of height,
density field was divided~or ‘‘segmented’’! into occupied
and unoccupied cells according to whetherr(r ).rL/2 or
not. The number of occupied cells at each heightz was used
to compute the cross-sectional area of the droplet at
height and, therefore, the drop radius as a function ofz. A
typical drop profile is shown in Fig. 6~b!.

This indirect procedure to determine the droplet rad
eliminates two possible artifacts. First, it removes the bl
ring of the base of the drop by the interface profile, whi
would otherwise be;(0.7– 0.8)r c . Second, it eliminates ef
fects due to the variation of fluid density with height whic
might otherwise introduce a systematic error if the mean p
ticle number density as a function of height was compu
directly. Such a variation of density with height is to b
expected, since the fluid responds to the varying pres
field through the EOS~i.e., it is still a compressible fluid
even if only weakly so!.

The drop profile was analyzed by normalizing with r
spect to the maximum diameterDE and comparing with a se
of precalculated profiles as the Bond numberb5rL gb2/s
varies~whereb is the radius of curvature of the base of t
droplet!. The profiles are calculated from the Young-Lapla
equation as described in earlier work@10#. From the best-fit
b value, the surface tension can be computed froms
5rL gDE2/H whereH(b) is a dimensionless function com
puted numerically.

Table III shows the quantities computed for several dro
for both parameter sets, and for several values ofg. Although
the surface tensions determined this way are not very pre
they are all consistent with the accurate values calcula

FIG. 6. Pendant droplet problem:~a! isosurface cut through 3d
density field atr5rL/2, showing the drop profile; and~b! drop
radius r as a function of heightz, computed by the method de
scribed in the text. The zero ofz is arbitrarily chosen. The solid line
is the Young-Laplace equation prediction; the circles are the m
sured profile. The ‘‘frozen’’ support particles at the top of the dr
give a ragged edge to the top of the isosurface in~a! and distort the
measured profile forz*23 in ~b!. Parameters correspond to set
in Table III. All distances are expressed in units ofr c .
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directly from the interfacial profiles. The drop profiles a
match the measured profiles quite accurately; see, for
ample, Fig. 6~b!.

V. DISCUSSION

The model developed here can be discussed in sev
contexts. First, it is a new simulation method for fluid m
chanics problems involving liquids with free surfaces. F
example, the above pendant droplet problem is a test of
static force balance and the results show that the DPD fl
obeys the Young-Laplace equation in a nontrivial geome
One can conclude that this particular version of many-bo
DPD offers a viable route for solving capillary problem
such as the distribution of liquids in porous materials. It
clearly possible to address dynamic force balance situat
too, but these will require further testing and parametri
tion, particularly for the notorious problem of contact lin
dynamics.

Second, now that vapor-liquid equilibrium is achieved f
a basic soft sphere model, one can ‘‘dress’’ the liquid up
various ways such as making the liquid particles into po
mers or model amphiphiles. In this way, new methods can
constructed to simulate complex fluids with animplicit sol-
vent. These developments are the subject of ongoing in
tigations and will be reported separately.

In a third context though, the reinterpretation of man
body DPD as a fluid whose potential energy is built out
local-density-dependent one-particle self-energies is q
novel from the point of view of liquid-state theory. Mos
previous work has concentrated on fixed pair potentials w
hard cores, and only minor attention has been paid to
potentials or density-dependent pair potentials. The pre
work though goes some way beyond these existing idea

It has long been recognized that an arbitraryU($r i%) can
be expanded as a sum over density-independent one-b
two-body~pair potential!, etc., terms. Normally the one-bod
terms, or self-energies, are harmless constants which ca
discarded, and most of the phenomena observed for liq
can be captured by truncating the expansion at the pair
tential level. If one allows the pieces in such an expansion
acquire a density dependence though, then the one-body
energy is no longer necessarily a constant, and it is no lon
necessary to go to the pair potential level to see interes

a-

TABLE III. Pendant drop profile data. Interaction paramete
are taken from Table II, according to the first digit of ‘‘Set.’’ Th
penultimate column is the surface tension computed from the d
shape, and the final column is the ‘‘exact’’ surface tension fro
Table II, computed by integration of the pressure tensor throug
planar interface.

Set g rL DE b 1/H(b) sshape sexact

5a 0.022 5.08 8.80~5! 0.378 0.57~3! 4.9~3! 4.95~3!

6f 0.025 6.05 9.00~5! 0.378 0.57~3! 7.0~5! 7.45~4!

6h 0.033 6.05 8.75~5! 0.404 0.52~2! 7.9~4! 7.45~4!

6g 0.030 6.05 8.70~5! 0.431 0.48~4! 6.6~5! 7.45~4!
2-7
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physics. Many-body DPD as described here is an exampl
precisely this.

The phase behavior of the present model is also po
tially very interesting. By analogy with related soft-core sy
tems such as the Gaussian core model@12,32# and models for
polymers of various architectures@33,34#, the particles in the
original DPD model are expected to freeze into a variety
ordered phases at low temperatures and intermediate d
ties, with a reentrant fluid phase at high densities. The v
sion of many-body DPD presented in this paper is c
structed to have a significant vapor-liquid coexistence reg
as shown in Fig. 3, but the low-temperature ordered pha
y

ud

et

v.

ir

da

o
.
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are presumably still present, as indicated by the presenc
oscillations in the liquid side of the vapor-liquid interface
Fig. 4. In such a case, the collision between the vapor-liq
transition and these ordered phases could prove to gen
rather unusual phase behavior, and the low-tempera
properties of many-body DPD models may well be wo
further examination.

ACKNOWLEDGMENT

I thank R. D. Groot for many discussions in the ea
stages of development of the many-body DPD model.
J.

ev.

:

@1# P.J. Hoogerbrugge and J.M.V.A. Koelman, Europhys. Lett.19,
155 ~1992!.

@2# R.D. Groot and P.B. Warren, J. Chem. Phys.107, 4423~1997!.
@3# R.D. Groot and T.J. Madden, J. Chem. Phys.108, 8713~1998!.
@4# R.D. Groot, T.J. Madden, and D.J. Tildesley, J. Chem. Ph

110, 9739~1999!.
@5# S. Jury, P. Bladon, M. Cates, S. Krishna, M. Hagen, J.N. R

dock, and P.B. Warren, Phys. Chem. Chem. Phys.1, 2051
~1999!.

@6# P. Prinsen, P.B. Warren, and M.A.J. Michels, Phys. Rev. L
89, 148302~2002!.

@7# P.V. Coveney and K.E. Novik, Phys. Rev. E54, 5134~1996!.
@8# S.I. Jury, P. Bladon, S. Krishna, and M.E. Cates, Phys. Re

59, R2535~1999!.
@9# K.E. Novik and P.V. Coveney, Phys. Rev. E61, 435 ~2000!.

@10# A.T. Clark, M. Lal, J.N. Ruddock, and P.B. Warren, Langmu
16, 6342~2000!.

@11# J.L. Jones, M. Lal, J.N. Ruddock, and N. Spenley, Fara
Discuss.112, 129 ~1999!.

@12# A.A. Louis, P.G. Bolhuis, and J.-P. Hansen, Phys. Rev. E62,
7961 ~2000!.

@13# I. Pagonabarraga and D. Frenkel, J. Chem. Phys.115, 5015
~2001!.

@14# The method was also invented independently by R. D. Gro
@15# S.Y. Trofimov, E.L.F. Nies, and M.A.J. Michels, J. Chem

Phys.117, 9383~2002!.
@16# S. Nugent and H.A. Posch, Phys. Rev. E62, 4968~2000!.
@17# P. Espan˜ol and M. Revenga, Phys. Rev. E67, 026705~2003!.
s.

-

t.

E

y

t.

@18# P. Espan˜ol, M. Serrano, and H.C. O¨ ttinger, Phys. Rev. Lett.83,
4542 ~1999!.

@19# P.B. Warren, Phys. Rev. Lett.87, 225702~2001!.
@20# M. P. Allen and D. J. Tildesley,Computer Simulation of Liq-

uids ~Clarendon Press, Oxford, 1987!.
@21# D. Frenkel and B. Smit,Understanding Molecular Simulation

~Academic Press, San Diego, 1996!.
@22# P. Espan˜ol and P.B. Warren, Europhys. Lett.30, 191 ~1995!.
@23# C.P. Lowe, Europhys. Lett.47, 145 ~1999!.
@24# W.K. den Otter and J.H.R. Clarke, Europhys. Lett.53, 426

~2001!.
@25# I. Vattulainen, M. Karttunen, G. Besold, and J.M. Polson,

Chem. Phys.116, 3967~2002!.
@26# D. Ruelle,Statistical Mechanics: Rigorous Results~World Sci-

entific, Singapore, 1999!.
@27# A.A. Louis, J. Phys.: Condens. Matter14, 9187~2002!.
@28# N.G. Almarza, E. Lomba, G. Ruiz, and C.F. Tejero, Phys. R

Lett. 86, 2038~2001!.
@29# F.H. Stillinger, H. Sakai, and S. Torquato, J. Chem. Phys.117,

288 ~2002!.
@30# C.F. Tejero, J. Phys.: Condens. Matter15, S395~2003!.
@31# C.F. Tejero and M. Baus, J. Chem. Phys.118, 892 ~2003!.
@32# F.H. Stillinger, J. Chem. Phys.65, 3968~1976!.
@33# M. Watzlawek, C.N. Likos, and H. Lo¨wen, Phys. Rev. Lett.82,

5289 ~1999!.
@34# C.N. Likos, N. Hoffmann, H. Lo¨wen, and A.A. Louis, J. Phys.

Condens. Matter14, 7681~2002!.
2-8


